Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Phytomedicine ; 124: 155272, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181530

RESUMO

BACKGROUND: Alzheimer's diseases (AD) and dementia are among the highly prevalent neurological disorders characterized by deposition of beta amyloid (Aß) plaques, dense deposits of highly phosphorylated tau proteins, insufficiency of acetylcholine (ACh) and imbalance in glutamatergic system. Patients typically experience cognitive, behavioral alterations and are unable to perform their routine activities. Evidence also suggests that inflammatory processes including excessive microglia activation, high expression of inflammatory cytokines and release of free radicals. Thus, targeting inflammatory pathways beside other targets might be the key factors to control- disease symptoms and progression. PURPOSE: This review is aimed to highlight the mechanisms and pathways involved in the neuroprotective potentials of lead phytochemicals. Further to provide updates regarding challenges associated with their use and their progress into clinical trials as potential lead compounds. METHODS: Most recent scientific literature on pre-clinical and clinical data published in quality journals especially on the lead phytochemicals including curcumin, catechins, quercetin, resveratrol, genistein and apigenin was collected using SciFinder, PubMed, Google Scholar, Web of Science, JSTOR, EBSCO, Scopus and other related web sources. RESULTS: Literature review indicated that the drug discovery against AD is insufficient and only few drugs are clinically approved which have limited efficacy. Among the therapeutic options, natural products have got tremendous attraction owing to their molecular diversity, their safety and efficacy. Research suggest that natural products can delay the disease onset, reduce its progression and regenerate the damage via their anti-amyloid, anti-inflammatory and antioxidant potentials. These agents regulate the pathways involved in the release of neurotrophins which are implicated in neuronal survival and function. Highly potential lead phytochemicals including curcumin, catechins, quercetin, resveratrol, genistein and apigenin regulate neuroprotective signaling pathways implicated in neurotrophins-mediated activation of tropomyosin receptor kinase (Trk) and p75 neurotrophins receptor (p75NTR) family receptors. CONCLUSIONS: Phytochemicals especially phenolic compounds were identified as highly potential molecules which ameliorate oxidative stress induced neurodegeneration, reduce Aß load and inhibit vital enzymes. Yet their clinical efficacy and bioavailability are the major challenges which need further interventions for more effective therapeutic outcomes.


Assuntos
Doença de Alzheimer , Produtos Biológicos , Curcumina , Fármacos Neuroprotetores , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Resveratrol/farmacologia , Curcumina/farmacologia , Quercetina/farmacologia , Apigenina/farmacologia , Genisteína/farmacologia , Peptídeos beta-Amiloides/metabolismo , Estresse Oxidativo , Anti-Inflamatórios/farmacologia , Produtos Biológicos/farmacologia , Transdução de Sinais , Fatores de Crescimento Neural/metabolismo , Compostos Fitoquímicos/uso terapêutico , Fármacos Neuroprotetores/química
2.
Future Med Chem ; 15(23): 2181-2194, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37997685

RESUMO

Background: DNA gyrase and urease enzymes are important targets for the treatment of gastroenteritis, appendicitis, tuberculosis, urinary tract infections and Crohn's disease. Materials & methods: Esterification of norfloxacin was performed to enhance DNA gyrase and urease enzyme inhibition potential. Structure elucidation and chemical characterization were done through spectral (1H NMR, Fourier transform IR, 13C NMR) and carbon, hydrogen, nitrogen and sulfur analysis along with molecular docking. Results & conclusion: The majority of derivatives exhibited significant results but the 3e derivative showed maximum bactericidal, DPPH scavenging (96%), DNA gyrase and urease enzyme inhibitory activity with IC50 of 0.15 ± 0.24 and 1.14 ± 0.11 µM respectively which was further supported by molecular docking studies. So, the active derivatives can serve as a lead compound for the treatment of various pathological conditions.


Assuntos
DNA Girase , Norfloxacino , Simulação de Acoplamento Molecular , Norfloxacino/farmacologia , DNA Girase/metabolismo , Urease/química , Urease/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Relação Estrutura-Atividade , Estrutura Molecular
3.
RSC Adv ; 13(40): 27912-27922, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37736569

RESUMO

In this study holmium oxide nanoparticles (Ho2O3 NPs) are fabricated using Hyphaene thebaica extracts as a bioreductant. The XRD pattern of HT-Ho2O3 NPs (product from phyto-reduction) suggested that the nanoparticles are crystalline with no impurities. Scherrer approximation revealed grain sizes of ∼10 nm. The HR-TEM revealed HT-Ho2O3 NPs possessed a quasi-spherical morphology complemented by SEM and the particle sizes were in the range of 6-12 nm. The infrared spectra revealed characteristic Ho-O bonding at ∼603 cm-1. Raman spectra indicated five main peaks positioned at 156 cm-1, 214 cm-1, 328 cm-1, 379 cm-1 and 607 cm-1. Eg (optical bandgap) was found to be 5.1 eV. PL spectra indicated two major peaks at 415 nm and 607 nm. EDS spectra confirmed the elemental presence of holmium (Ho). Spotty rings were obtained during the SAED measurement which indicated crystallinity of HT-Ho2O3 NPs. The HT-Ho2O3 NPs were further analyzed for their antioxidant, anti-angiogenic and cytotoxic properties. The antioxidant potential was moderate i.e., 43.40 ± 0.96% at 1000 µg mL-1 which decreased in a dose dependent manner. Brine shrimp lethality was highest at 1000 µg mL-1 with the LC50 320.4 µg mL-1. Moderate anti-angiogenic potential was observed using in ova CAM assay. MTT bioassay revealed that the HT-Ho2O3 NPs inhibited the 3T3 cells (IC50 67.9 µg mL-1), however, no significant inhibition was observed against MCF-7 cells. α-Amylase and ß-glucosidase inhibition revealed that the HT-Ho2O3 NPs can be of use in controlling blood glucose levels. Overall, it can be concluded that biosynthesis using aqueous extracts can be a suitable alternative in finding ecofriendly paradigms for the synthesis of nanoparticles. We suggest extended research into the bioreduced Ho2O3 NPs for establishing their biomedical potential and toxicity.

5.
J Ethnopharmacol ; 317: 116786, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37328081

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Medicinal plants of the family Rosaceae have a long history of traditional uses in the management of neurological disorders. Sorbaria tomentosa Lindl. Rehder is composed of antioxidant and neuroprotective polyphenolics. AIMS OF THE STUDY: The current study was designed to explore phenolics profile via high performance liquid chromatography-photodiode array detector (HPLC-DAD) and validated the neuroprotective and anxiolytic potentials of S. tomentosa by applying in vitro and in vivo approaches. MATERIALS AND METHODS: The plant crude methanolic extract (St.Crm) and fractions were subjected to HPLC-DAD analysis for qualitative and quantitative assessment of phytochemicals. Samples were screened for in vitro free radicals scavenging assays by using 2,2-diphenylpicrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) along with acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes inhibition assays. For cognitive and anxiolytic studies, mice were subjected to open field, elevated plus maze (EPM), light-dark model, Y-maze, shallow water maze (SWM), and novel object recognition (NOR) tests. RESULTS: HPLC-DAD analysis revealed the presence of high concentrations of phenolic compounds. For instance, in St.Cr, 21 phenolics were quantified, among which apigenin-7-glucoside (291.6 mg/g), quercetin (122.1 mg/g), quercetin-3-feruloylsophoroside-7-glucoside (52.6 mg/g), quercetin-7-glucoside (51.8 mg/g), ellagic acid (42.7 mg/g), luteolin (45.0 mg/g), kaempferol (40.5 mg/g), 5-feruloylquinic acid (43.7 mg/g) were present in higher concentrations. Likewise, in ethyl acetate fraction (St.Et.Ac), 21 phenolics were identified as 3,5-di-caffeoylquinic acid (177.4 mg/g) and 5-hydroxybenzoylquinic acid (46.9 mg/g) were most abundant phytochemicals. Highly valuable phenolics were also identified in other fractions including butanol (St.Bt), chloroform (St.Chf), and n-hexane (St.Hex). The various fractions exhibited concentration dependent inhibition of free radicals in DPPH and ABTS assays. Potent AChE inhibitory potentials were revealed by the test samples with St.Chf, St.Bt and St.EtAc being the most active having an IC50 of 298.1, 580.1, and 606.47 µg mL-1, respectively. Similarly, St.Chf, St.Bt, St.EtAc and St.Cr exhibited potent BChE inhibitory activity and was observed as 59.14, 54.73, 51.35 and 49.44%, respectively. A significant improvement in the exploratory behavior was observed in open field test and stress/anxiety was relieved effectively at 50-100 mg/kg. Likewise, EPM, light-dark and NOR tests revealed an anxiolytic and memory enhancing behaviors. These effects were further corroborated from the Y-maze and SWM transgenic studies that showed considerable improvement in cognition retention. CONCLUSIONS: These findings concluded that S. tomentosa possessed potential anxiolytic and nootropic efficacies and may have therapeutic potential in neurodegenerative disorders.


Assuntos
Ansiolíticos , Butirilcolinesterase , Animais , Camundongos , Quercetina/análise , Acetilcolinesterase , Cromatografia Líquida de Alta Pressão , Ansiolíticos/farmacologia , Polifenóis/farmacologia , Polifenóis/análise , Inibidores da Colinesterase/farmacologia , Extratos Vegetais/química , Antioxidantes/química , Radicais Livres , Fenóis/farmacologia , Fenóis/análise , Cognição
6.
Chem Biodivers ; 20(7): e202300482, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37220245

RESUMO

Prodrugs of dexibuprofen having ester moieties instead of free carboxylic acid which involves in gastrointestinal side effects have been synthesized. Dexibuprofen acid was condensed with different alcohols/phenols to afford the ester prodrugs. All of the synthesized prodrugs were characterized by their physical attributes, elemental analysis, FT-IR, 1 H-NMR, and 13 C-NMR spectroscopy. The in vitro anti-inflammatory studies was done by chemiluminescence technique reflect prodrugs have been more potent, owing to the different chemical structures. Lipoxygenase enzyme inhibition assay was also assess and found compound DR7 with IC50 =19.8 µM), DR9 (IC50 =24.8 µM) and DR3 (IC50 =47.2 µM) as compared with Dexibuprofen (IC50 =156.6 µM). It was also evaluated for docking studies revealed that DR7 has found to be more potent anti-inflammatory against 5-LOX (3 V99) as well as analgesic against COX-II (5KIR) enzyme. Anti-oxidant activities were also performed, DR3 (86.9 %), DR5 (83.5 %), DR7 (93.9 %) and DR9 (87.4 %) were found to be more anti-oxidant as compared to (2S)-2-[4-(2-methylpropyl)phenyl]propanoic acid (52.7 %).


Assuntos
Antioxidantes , Pró-Fármacos , Antioxidantes/farmacologia , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Anti-Inflamatórios/farmacologia , Ésteres , Estrutura Molecular , Relação Estrutura-Atividade
7.
Molecules ; 28(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36770873

RESUMO

Diabetes mellitus (DM) is a metabolic disorder majorly arising from the pathophysiology of the pancreas manifested as a decline in the insulin production or the tissue's resistance to the insulin. In this research, we have rationally designed and synthesized new succinimide-thiazolidinedione hybrids for the management of DM. In a multistep reaction, we were able to synthesize five new derivatives (10a-e). All the compounds were new containing a different substitution pattern on the N-atom of the succinimide ring. Initially, all the compounds were tested against the in vitro α-glucosidase, α-amylase, PTP1B, and DPP4 targets. In all of these targets, the compound 10d was observed to be the most potential antidiabetic agent. Based on this, the antidiabetic activity of the compound 10d was further investigated in experimental animals, which overall gave us encouraging results. The molecular docking studies of the compound 10d was also performed against the target enzymes α-glucosidase, α-amylase, PTP1B, and DPP4 using MOE. Overall, we observed that we have explored a new class of compounds as potential antidiabetic agents.


Assuntos
Diabetes Mellitus , Tiazolidinedionas , Animais , Hipoglicemiantes , alfa-Glucosidases/metabolismo , Inibidores de Glicosídeo Hidrolases , Simulação de Acoplamento Molecular , Dipeptidil Peptidase 4 , Diabetes Mellitus/tratamento farmacológico , Insulina , Succinimidas , alfa-Amilases/metabolismo
8.
ACS Omega ; 8(5): 5116-5123, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36777613

RESUMO

The current research reports the synthesis of 14 para-substituted thiosemicarbazone derivatives in good to excellent yields using standard procedures. Initially, 4-ethoxybenzaldehyde (1) and 4-nitrobenzaldehyde (2) were refluxed with thiosemicarbazide in the presence of acetic acid in ethanol for 4-5 h. Then, various substituted phenacyl bromides were treated with the desired thiosemicarbazones (3 and 4) in the presence of triethylamine in ethanol with constant stirring for 5-6 h. The resulting derivatives were confirmed through electron impact mass spectrometry and 1H NMR spectroscopy and evaluated for anticholinesterase inhibitory activity. Among the series, four compounds, 19, 17, 7, and 6, showed potent inhibitory activity against the acetylcholinesterase (AChE) enzyme, having IC50 values of 110.19 ± 2.32, 114.57 ± 0.15, 140.52 ± 0.11, and 160.04 ± 0.02 µM, respectively, compared with standard galantamine (IC50 = 104.5 ± 1.20 µM). Similarly, compounds 19 (IC50 = 145.11 ± 1.03 µM), 9 (IC50 = 147.20 ± 0.09 µM), 17 (IC50 = 150.36 ± 0.18 µM), and 6 (IC50 = 190.21 ± 0.13 µM) were the most excellent inhibitors of butyrylcholinesterase (BChE) when compared with the standard drug galantamine (IC50 = 156.8 ± 1.50 µM). In silico studies were accomplished on the produced derivatives in order to explain the binding interface of compounds with the active sites of AChE and BChE enzymes.

9.
Molecules ; 28(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36838897

RESUMO

This study aimed to evaluate 2-(N-((2'-(2H-tetrazole-5-yl)-[1,1'-biphenyl]-4yl)-methyl)-pentanamido)-3-methyl butanoic acid-based ester derivatives as a new class of angiotensin-II receptor antagonists. For this purpose, a series of compounds were synthesized using a variety of phenols. Their chemical characterization was established by FTIR, 1HNMR, and 13CNMR techniques. The biological activities including antioxidant potentials using the DPPH assay, the antihypertensive assay, the urease enzyme inhibition assay, and the antibacterial assay using agar well diffusion methods were performed. All the new compounds showed significant free radical scavenging potentials more than the parent drug while retaining antihypertensive potentials along with urease inhibition properties. However, the AV2 test compound was found to be the most potent against hypertension. Most of the synthesized analogs showed urease inhibitory actions. Molecular docking studies were performed for all the active analogs to decode the binding detail of the ligands with receptors of the enzyme's active site.


Assuntos
Anti-Hipertensivos , Urease , Ácido Butírico , Simulação de Acoplamento Molecular , Tetrazóis , Relação Estrutura-Atividade
10.
AMB Express ; 13(1): 24, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36840788

RESUMO

Hyphaene thebaica fruits were used for the fabrication of spherical erbium oxide nanoparticles (HT-Er2O3 NPS) using a one-step simple bioreduction process. XRD pattern revealed a highly crystalline and pure phase with crystallite size of ~ 7.5 nm, whereas, the W-H plot revealed crystallite size of 11 nm. FTIR spectra revealed characteristic Er-O atomic vibrations in the fingerprint region. Bandgap was obtained as 5.25 eV using K-M function. The physicochemical and morphological nature was established using Raman spectroscopy, reflectance spectroscopy, SAED and HR-TEM. HT-Er2O3 NPS were further evaluated for antidiabetic potential in mice using in-vivo and in-vitro bioassays. The synthesized HT-Er2O3 NPS were screened for in vitro anti-diabetic potentials against α-glucosidase enzyme and α-amylase enzyme and their antioxidant potential was evaluated using DPPH free radical assay. A dose dependent inhibition was obtained against α-glucosidase (IC50 12 µg/mL) and α-amylase (IC50 78 µg/mL) while good DPPH free radical scavenging potential (IC50 78 µg mL-1) is reported. At 1000 µg/mL, the HT-Er2O3 NPS revealed 90.30% and 92.30% inhibition of α-amylase and α-glucosidase enzymes. HT-Er2O3 NPs treated groups were observed to have better glycemic control in diabetic animals (503.66 ± 5.92*** on day 0 and 185.66 ± 2.60*** on day 21) when compared with positive control glibenclamide treated group. Further, HT-Er2O3 NPS therapy for 21 days caused a considerable effect on serum total lipids, cholesterol, triglycerides, HDL and LDL as compared to untreated diabetic group. In conclusion, our preliminary findings on HT-Er2O3 NPS revealed considerable antidiabetic potential and thus can be an effective candidate for controlling the post-prandial hyperglycemia. However, further studies are encouraged especially taking into consideration the toxicity aspects of the nanomaterial.

11.
PLoS One ; 17(12): e0278684, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36574404

RESUMO

The goal of the current work was to create structural analogues of a beta lactam antibiotic that might be possibly effective against bacterial resistant strains. FTIR, 1H NMR, 13C NMR, and CHNS analyses were used to perform the spectroscopic study on the compounds M1-8. The effects of the aforementioned substances on gram-positive and gram-negative bacterial strains were investigated. Most of the eight compounds had antibacterial activity that was lower than or equivalent to that of the original medication, but two molecules, M2 and M3, surprisingly, had stronger antibacterial activity. The findings of synthesized analogues against alpha-glucosidase and DPPH inhibition were found to be modest, whereas M2, M3, and M7 strongly inhibited the urease. To comprehend the potential mode of action, a molecular docking research was conducted against urease and -amylase. The research may help in the quest for novel chemical compounds that would be effective against bacteria that are resistant to antibiotics.


Assuntos
Ácidos Carboxílicos , Urease , Simulação de Acoplamento Molecular , Ácidos Carboxílicos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
12.
Metabolites ; 12(11)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36355138

RESUMO

Plants' bioactives are well-known safe drugs for vital diseases. Flavones and Flavonoid-rich dietary supplements are known to exhibit neuroprotective potential. In this study, we isolated a flavone 2-(3,4-dimethoxyphenyl)-3,7-dihydroxy-4H-chromen-4-one from Notholirion thomsonianum and it was evaluated against various targets of the oxidative stress-related neurological disorders. The compound showed excellent acetyl and butyrylcholinesterase inhibitions in its profile, giving IC50 values of 1.37 and 0.95 µM, respectively. Similarly, in in-vitro MAO-B assay, our flavone exhibited an IC50 value of 0.14 µM in comparison to the standard safinamide (IC50 0.025 µM). In in-vitro anti-inflammatory assay, our isolated compound exhibited IC50 values of 7.09, 0.38 and 0.84 µM against COX-1, COX-2 and 5-LOX, respectively. The COX-2 selectivity (SI) of the compound was 18.70. The compound was found safe in animals and was very effective in carrageenan-induced inflammation. Due to the polar groups in the structure, a very excellent antioxidant profile was observed in both in-vitro and in-vivo models. The compound was docked into the target proteins of the respective activities and the binding energies confirmed the potency of our compound. Furthermore, absorption, distribution, metabolism, excretion, and toxicity (ADMET) results showed that the isolated flavone has a good GIT absorption ability and comes with no hepatic and cardiotoxicity. In addition, the skin sensitization test, in-vitro human cell line activation test (h-CLAT) and KeratinoSens have revealed that isolated flavone is not skin sensitive with a confidence score of 59.6% and 91.6%. Herein, we have isolated a natural flavone with an effective profile against Alzheimer's, inflammation and oxidative stress. The exploration of this natural flavone will provide a baseline for future research in the field of drug development.

13.
Artigo em Inglês | MEDLINE | ID: mdl-35942378

RESUMO

Based on the diverse pharmacological potency and the structural features of succinimide, this research considered to synthesize succinimide derivatives. Moreover, these compounds were estimated for their biological potential in terms of anti-diabetic, anti-cholinesterase, and anti-oxidant capacities. The compounds were synthesized through Michael addition of various ketones to N-aryl maleimides. Similarly, the MOE software was used for the molecular docking study to explore the binding mode of the potent compounds against different enzymes. In the anti-cholinesterase activity, the compounds MSJ2 and MSJ10 exhibited outstanding activity against acetylcholinesterase (AChE), i.e., 91.90, 93.20%, and against butyrylcholinesterase (BChE), i.e., 97.30, 91.36% inhibitory potentials, respectively. The compounds MSJ9 and MSJ10 exhibited prominent α-glucosidase inhibitory potentials, i.e., 87.63 and 89.37 with IC50 value of 32 and 28.04 µM, respectively. Moreover, the compounds MSJ2 and MSJ10 revealed significant scavenging activity against DPPH free radicals with IC50 values of 2.59 and 2.52, while against ABTS displayed excellent scavenging potential with IC50 values 7.32 and 3.29 µM, respectively. The tentative results are added with molecular docking studies in the active sites of enzymes to predict the theoretical protein-ligand binding modes. Further detailed mechanism-based studies in animal models are essential for the in vivo evaluation of the potent compound.

14.
Curr Top Med Chem ; 22(22): 1811-1820, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36029077

RESUMO

Alzheimer's disease (AD) is one of the main healthcare challenges of the twenty-first century, not only affecting millions of people's quality of life but also increasing the burden on the medical community, families, and society. It is a neurodegenerative disorder characterized by learning and cognitive dysfunction, behavioral turbulence, and memory loss and is a major cause of dementia, contributing to 50-60 % of dementia cases in patients above the age of 65. The major pathophysiological changes include accumulation of beta-amyloid plaques (Aß), highly phosphorylated tau protein, neuroinflammation, GABA neurotransmission disruption, mitochondrial dysfunction, neuronal damage due to free radicals, and decreased concentration of acetylcholine (ACh) and butyrylcholine (BCh). The inability of commercial therapeutics, such as donepezil, rivastigmine, galantamine, and tacrine, leads to the attraction toward phytochemical-based therapeutics. Phytochemicals derived from plants exhibit neuroprotection via targeting apoptosis, neurotrophic factor deficit, mitochondrial dysfunction, oxidative stress, and abnormal accumulation of proteins. Here, we discussed some of the neuroprotective phytochemicals used for the treatment of neurodegenerative diseases like AD and dementia.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Qualidade de Vida , Rivastigmina , Donepezila , Peptídeos beta-Amiloides/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico
16.
BMC Complement Med Ther ; 22(1): 154, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35698061

RESUMO

AIM: The study was planned to investigate the phytochemicals, antidiabetic and antioxidant studies of A. consanguineum. METHODS: The preliminary studies were performed on crude extract and different solvent fractions. Based on the potency, the chloroform fraction was semi-purified to phyto-fractions CHF-1 - 5. Furthermore, CHF-3 was subjected to isolation of pure compounds using column chromatography. The α-glucosidase, α-amylase and antioxidant assays (DPPH, ABTS, H2O2) were performed on all samples. The in-vivo experiments on compounds 1 and 2 were also performed using oral glucose tolerance test. Docking studies were performed on α-glucosidase and α-amylase targets. RESULTS: Among all fractions, the chloroform fraction exhibited excellent activities profile giving IC50 values of 824, 55, 117, 58 and 85 µg/ml against α-glucosidase, α-amylase, DPPH, ABTS and H2O2 targets respectively. Among the five semi-purified chloroform phyto-fractions (CHF-1-5), CHF-3 was the leading fraction in activities giving IC50 values of 85.54, 61.19 and 26.58 µg/ml against α-glucosidase, α-amylase and DPPH respectively. Based on the overall potency and physical amount of CHF-3, it was subjected to purification to get compounds 1 and 2. The two compounds were also found potent in in-vitro activities. The observed IC50 values for compound 1 were 7.93, 28.01 and 6.19 µg/ml against α-glucosidase, α-amylase and DPPH respectively. Similarly, the compound 2 exhibited IC50 of 14.63, 24.82 and 7.654 µg/ml against α-glucosidase, α-amylase and DPPH respectively. Compounds 1 and 2 were potent in decreasing the blood glucose levels in experimental animals. Compounds 1 and 2 also showed interactions with the respective enzymes with molecular docking. CONCLUSIONS: We can conclude that A. Consanguineum is a rich source of natural antidiabetic agents. Bioguided isolation of compound 1 and 2 showed potential inhibitions in all tested in-vitro antidiabetic targets. Further, both the compounds were also able to decrease the blood glucose levels in experimental animals.


Assuntos
Allium , Antioxidantes , Animais , Antioxidantes/química , Glicemia , Clorofórmio , Peróxido de Hidrogênio , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Simulação de Acoplamento Molecular , Extratos Vegetais/química , alfa-Amilases , alfa-Glucosidases
17.
Molecules ; 27(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35684382

RESUMO

Diabetes mellitus is a metabolic disorder and is a global challenge to the current medicinal chemists and pharmacologists. This research has been designed to isolate and evaluate antidiabetic bioactives from Fragaria indica. The crude extracts, semi-purified and pure bioactives have been used in all in vitro assays. The in vitro α-glucosidase, α-amylase and DPPH free radical activities have been performed on all plant samples. The initial activities showed that ethyl acetate (Fi.EtAc) was the potent fraction in all the assays. This fraction was initially semi-purified to obtain Fi.EtAc 1-3. Among the semi-purified fractions, Fi.EtAc 2 was dominant, exhibiting potent IC50 values in all the in vitro assays. Based on the potency and availability of materials, Fi.EtAc 2 was subjected to further purification to obtain compounds 1 (2,4-dichloro-6-hydroxy-3,5-dimethoxytoluene) and 2 (2-methyl-6-(4-methylphenyl)-2-hepten-4-one). The two isolated compounds were characterized by mass and NMR analyses. The compounds 1 and 2 showed excellent inhibitions against α-glucosidase (21.45 for 1 and 15.03 for 2 µg/mL), α-amylase (17.65 and 16.56 µg/mL) and DPPH free radicals (7.62 and 14.30 µg/mL). Our study provides baseline research for the antidiabetic bioactives exploration from Fragaria indica. The bioactive compounds can be evaluated in animals-based antidiabetic activity in future.


Assuntos
Fragaria , alfa-Glucosidases , Animais , Antioxidantes/química , Fragaria/metabolismo , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , alfa-Amilases/metabolismo , alfa-Glucosidases/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-35463090

RESUMO

Introduction: Natural products are among the most useful sources for the discovery of new drugs against various diseases. Keeping in view the ethnobotanical relevance ethnopharmacological significance of Polygonaceae family in diabetes, the current study was designed to isolate pure compounds from Persicaria hydropiper L. leaves and evaluate their in vitro and in silico antidiabetic potentials. Methods: Six compounds were isolated from the chloroform-ethyl acetate fractions using gravity column chromatography and were subjected to structure elucidation process. Structures were confirmed using 1H-NMR, 13C-NMR, and mass spectrometry techniques. Isolated phytochemicals were subjected to in vitro antidiabetic studies, including α-glucosidase, α-amylase inhibition, and DPPH, and ABTS antioxidant studies. Furthermore, the in silico binding mode of these compounds in the target enzymes was elucidated via MOE-Dock software. Results: The isolated compounds revealed concentration-dependent inhibitions against α-glucosidase enzyme. Ph-1 and Ph-2 were most potent with 81.84 and 78.79% enzyme inhibitions at 1000 µg·mL-1, respectively. Ph-1 and Ph-2 exhibited IC50s of 85 and 170 µg·mL-1 correspondingly. Likewise, test compounds showed considerable α-amylase inhibitions with Ph-1 and Ph-2 being the most potent. Tested compounds exhibited considerable antioxidant potentials in both DPPH and ABTS assays. Molecular simulation studies also revealed top-ranked confirmations for the majority of the compounds in the target enzymes. Highest observed potent compound was Ph-1 with docking score of -12.4286 and formed eight hydrogen bonds and three H-pi linkages with the Asp 68, Phe 157, Phe 177, Asn 241, Glu 276, His 279, Phe 300, Glu 304, Ser 308, Pro 309, Phe 310, Asp 349, and Arg 439 residues of α-glucosidase binding packets. Asp 68, Glu 276, Asp 349, and Arg 439 formed polar bonds with the 3-ethyl-2-methylpentane moiety of the ligand. Conclusions: The isolated compounds exhibited considerable antioxidant and inhibitory potentials against vital enzymes implicated in T2DM. The docking scores of the compounds revealed that they exhibit affinity for binding with target ligands. The enzyme inhibition and antioxidant potential of the compounds might contribute to the hypoglycemic effects of the plant and need further studies.

19.
Dev Psychol ; 58(7): 1277-1285, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35446066

RESUMO

Around the world, musical engagement frequently involves movement. Most adults easily clap or sway to a wide range of tempos, even without formal musical training. The link between movement and music emerges early-young infants move more rhythmically to music than speech, but do not reliably align their movements to the beat. Laboratory work encouraging specific motor patterns (e.g., drumming, tapping) demonstrates that toddlers and young children's movements are affected by music in a rudimentary way, such that they move faster to faster rhythms (tempo flexibility). In the present study, we developed and implemented a novel home recording method to investigate how musical familiarity and tempo affect children's naturalistic free-dance movements. Caregivers made home recordings of their children's responses to an experimenter-created playlist (N = 83, age range = 1.25 to 3.91 years, Mage = 2.39 years, SD = .74 years; 41 girls, 42 boys; 75% of household incomes > $90 000 CAD). Children listened to 1-min excerpts of their favorite music and unfamiliar, genre-matched music, each played at 90, 120, and 150 bpm (pitch constant; order randomized). Children moved faster to faster music and demonstrated tempo flexibility for both favorite and unfamiliar music. Favorite music encouraged more smiling across tempo conditions than unfamiliar music, as well as more dancing in the slowest tempo condition. Results demonstrate that young children's self-selected movements are affected by musical tempo and familiarity. We also demonstrate the usefulness of a naturalistic home recording method for assessing early auditory-motor integration. (PsycInfo Database Record (c) 2022 APA, all rights reserved).


Assuntos
Música , Adulto , Percepção Auditiva/fisiologia , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Movimento/fisiologia , Reconhecimento Psicológico
20.
Artigo em Inglês | MEDLINE | ID: mdl-35096118

RESUMO

OBJECTIVE: Medicinal plants and essentials oils are well known for diverse biological activities including antidiabetic potential. This study was designed to isolate essential oils from the leaves of Persicaria hydropiper L. (P. hydropiper), perform its phytochemical analysis, and explore its in vitro antidiabetic effects. MATERIALS AND METHODS: P. hydropiper leaves essential oils (Ph.Los) were extracted using a hydrodistillation apparatus and were subjected to phytochemical analysis using the gas chromatography mass spectrometry (GC-MS) technique. Ph.Lo was tested against two vital enzymes including α-glucosidase and α-amylase which are important targets in type-2 diabetes. The identified compounds were tested using in silico approaches for their binding affinities against the enzyme targets using MOE-Dock software. RESULTS: GC-MS analysis revealed the presence of 141 compounds among which dihydro-alpha-ionone, cis-geranylacetone, α-bulnesene, nerolidol, ß-caryophyllene epoxide, and decahydronaphthalene were the most abundant compounds. Ph.Lo exhibited considerable inhibitory potential against α-glucosidase enzyme with 70% inhibition at 1000 µg mL-1 which was the highest tested concentration. The inhibitory activity of positive control acarbose was 77.30 ± 0.61% at the same tested concentration. Ph.Lo and acarbose exhibited IC50 of 170 and 18 µg mL-1 correspondingly. Furthermore, dose-dependent inhibitions were observed for Ph.Lo against α-amylase enzyme with an IC50 of 890 µg mL-1. The top-ranked docking conformation was observed for ß-caryophyllene epoxide with a docking score of -8.3182 against α-glucosidase, and it has established seven hydrogen bonds and one H-pi interaction at the active site residues (Phe 177, Glu 276, Arg 312, Asp 349, Gln 350, Asp 408, and Arg 439). Majority of the identified compounds fit well in the binding pocket of Tyr 62, Asp 197, Glu 233, Asp 300, His 305, and Ala 307 active residues of α-amylase. ß-Caryophyllene epoxide was found to be the most active inhibitor with a docking score of -8.3050 and formed five hydrogen bonds at the active site residues of α-amylase. Asp 197, Glu 233, and Asp 300 active residues were observed to be making polar interactions with the ligand. CONCLUSIONS: The current study revealed that Ph.Lo is rich in bioactive metabolites which might contribute to its enzyme inhibitory potential. Inhibition of these enzymes is the key target in reducing postprandial hyperglycemia. However, further detailed in vivo studies are required for their biological and therapeutic activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...